
Aphros documentation
Release 0.1.2

Petr Karnakov Sergey Litvinov

Jul 27, 2021

1 Introduction

Aphros is a finite volume solver for incompressible multiphase flows with surface tension. Key features:

• implementation in C++14

• abstractions for mesh elements (cells, faces and nodes), range-based loops over them and the corresponding data
fields (cell-, face- and node-based fields)

• convenient and fast development (no need to write 3D loops) using only standard features of the language
(without code generators or domain-specific languages)

• scalability to thousands of compute nodes using MPI/OpenMP thanks to the Cubism library for distributed
computing on structured grids

• coroutines to enable encapsulation in the block-wise processing framework

• individual solvers can be used separately as regular classes or functions

• fluid solver based on SIMPLE or Bell-Colella-Glaz methods

• conservative split advection solver based on PLIC

• method of particles for curvature estimation that outperforms standard techniques at low resolutions which is
well-suited for simulation with many small bubbles and drops

• multilayer volume-of-fluid scheme for coalescence prevention which has the computational cost that does not
depend on the number of bubbles in the simulation and therefore can describe processes such as generation of
foam

The source code is available on GitHub.

2 Communication

The grid is decomposed into subdomains, one for each MPI rank. Each subdomain is further divided into cubic
blocks of fixed size. The program is built following the SPMD (single program multiple data) model. Each MPI rank
processes its blocks sequentially. The code is divided into stages which are executed in parallel on all blocks with
synchronization after every stage. This implements coroutines. The code can issue communication requests which are
collected during each stage and executed before transferring to the next stage.

The following function consists of two stages:

1

https://github.com/cselab/aphros

void F(Mesh& m) {
auto sem = m.GetSem();
struct {
FieldCell<Scal> fc;

}* ctx(sem);

if (sem()) {
fc.Reinit(m, m.GetId());
m.Comm(&fc);

}

if (sem()) {
fc.Reinit(m, 0);

}
}

Mesh m provides functionality for parallel communication. Pointer ctx will be initialized to point at an instance of the
user-defined struct persistent across stages of one call of the function. The instance is created before the execution of
the first stage and destroyed after the last stage.

Communication requests include:

void Comm(std::unique_ptr<CommRequest>&& r)

void Reduce(std::unique_ptr<Op>&& o)

void GatherToLead(std::vector<T>* buf)

void Dump(const FieldCell<Scal>* field, std::string name)

3 Convection-diffusion equation

Abstract class ConvDiffVect describes the interface of a solver for the vector convection-diffusion equation

𝜌
(︁𝜕u
𝜕𝑡

+ (v · ∇)u
)︁

= ∇ · (𝜇∇u) + f

in the discrete form

𝜌𝑐

(︁𝛿u𝑐

𝛿𝑡
+

1

𝑉𝑐

∑︁
𝑓∈𝑐

𝑣𝑓u𝑓𝑆
𝑐
𝑓

)︁
=

1

𝑉𝑐

∑︁
𝑓∈𝑐

𝜇𝑓
𝛿u𝑓

𝛿𝑛
𝑆𝑐
𝑓 + f𝑐 (3.1)

where 𝑐 is a cell index, 𝜑𝑐 is a cell-average, 𝑓 ∈ 𝑐 are neighbour faces of cell 𝑐, 𝜑𝑓 is a face-average, 𝑆𝑐
𝑓 is the signed

face area (positive if n𝑓 is an outer normal to 𝑐) and 𝑉𝑐 is the cell volume.

The constructor takes pointers to fields of density 𝜌, viscosity 𝜇, force f and volume flux v · S𝑓 :

// par: parameters
// fcr: density
// ffd: diffusion coefficient
// fcs: source
// ffv: volume flux
ConvDiffVect(

double time, double dt, M& m_, const EB& eb_, Par par_,
const FieldCell<Scal>* fcr, const FieldFaceb<Scal>* ffd,
const FieldCell<Vect>* fcs, const FieldFaceb<Scal>* ffv)

2

After an implementation is constructed, the solution is advanced by calling MakeIteration() and the current
velocity field is returned by

virtual const FieldCell<Vect>& GetVelocity(Step) const

The interface also exposes functions

virtual void Assemble(
const FieldCell<Vect>& fcw, const FieldFaceb<Scal>& ffv)

// linear system returned by GetDiag() and GetConst()
virtual void Assemble(

const FieldCell<Vect>& fcw, const FieldFaceb<Scal>& ffv)

// linear system returned by GetDiag() and GetConst()
virtual void Assemble(

const FieldCell<Vect>& fcw, const FieldFaceb<Scal>& ffv)

to assemble the linear system for a given velocity field fcw from the previous iteration and the volume flux ffv and
access its scalar component d. Furthermore, the current solution can be explicitly corrected with

virtual void CorrectVelocity(Step, const FieldCell<Vect>&)

Both these features are required for the pressure correction equation.

3.1 Implicit solver

Class ConvDiffVectImp implements an implicit solver corresponding to the discrete equation

𝜌𝑠𝑐

(︁𝛿u𝑠+1
𝑐

𝛿𝑡
+

1

𝑉𝑐

∑︁
𝑓∈𝑐

𝑣𝑠𝑓u
𝑠+1
𝑓 𝑆𝑐

𝑓

)︁
=

1

𝑉𝑐

∑︁
𝑓∈𝑐

𝜇𝑠
𝑓

𝛿u𝑠+1
𝑓

𝛿𝑛
𝑆𝑐
𝑓 + f𝑠𝑐

which requires solving a linear system at every iteration.

In addition to the requirements of the base class, the constructor takes mappings describing the boundary conditions
and the initial fields:

// ffv: volume flux
ConvDiffVect(

double time, double dt, M& m_, const EB& eb_, Par par_,
const FieldCell<Scal>* fcr, const FieldFaceb<Scal>* ffd,
const FieldCell<Vect>* fcs, const FieldFaceb<Scal>* ffv)

with the initial velocity fcvel, face conditions mfc, cell conditions mcc, density fcr, viscosity fcd, force fcs,
and volume flux ffv. Parameters of the solver are provided by

struct ConvDiffPar {
Scal relax = 1.; // relaxation factor [0,1] (1 -- no relaxation)
bool second = true; // second order in time
ConvSc sc = ConvSc::quick; // scheme for convective flux (see convdiffi.h)
Scal df = 1.; // deferred correction factor
Scal th = 1e-10; // threshold for flow direction
bool stokes = false; // Stokes flow, disable convective fluxes and time
bool symm = false; // use symmetric solver for linear system
bool explconv = false; // explicit convective fluxes in case Conv::imp

};

3

where sc defines the interpolation scheme

Table 3.1: Interpolation schemes.
ConvSc::fou First Order Upwind
ConvSc::cd Central Differences (midpoint)
ConvSc::sou Second Order Upwind
ConvSc::quick QUICK

3.2 Explicit solver

Class ConvDiffVectExp implements an explicit solver corresponding to the discrete equation

𝜌𝑠𝑐

(︁𝛿u𝑠+1
𝑐

𝛿𝑡
+

1

𝑉𝑐

∑︁
𝑓∈𝑐

𝑣𝑠𝑓u
𝑠
𝑓𝑆

𝑐
𝑓

)︁
=

1

𝑉𝑐

∑︁
𝑓∈𝑐

𝜇𝑠
𝑓

𝛿u𝑠
𝑓

𝛿𝑛
𝑆𝑐
𝑓 + f𝑠𝑐 .

Here the solution is advanced by explicit formulas and the linear system is constructed only to implement
Assemble() and GetVelocityEquations() of the base class.

4 Navier-Stokes equations

Abstract class FluidSolver describes the interface of a solver for the Navier-Stokes equations

∇ · u = 𝑆𝑣

𝜌
(︁𝜕u
𝜕𝑡

+ (v · ∇)u
)︁

= −∇𝑝 + ∇ · 𝜇(∇u + ∇u𝑇) + f

where the continuity equation is discretized as ∑︁
𝑓∈𝑐

𝑣𝑓𝑆
𝑐
𝑓 = 𝑆𝑣

and the momentum equation as (3.1), where 𝑆𝑣 is the volume source term.

The constructor takes pointers to fields of density 𝜌, viscosity 𝜇, force f and volume source 𝑆𝑣:

// fcr: density
// fcd: dynamic viscosity
// fcf: force
// febp: projections of balanced force
// fcsv: volume source
// fcsm: mass source
FluidSolver(

double t, double dt, M& m_, const FieldCell<Scal>* fcr,
const FieldCell<Scal>* fcd, const FieldCell<Vect>* fcf,
const FieldEmbed<Scal>* febp, const FieldCell<Scal>* fcsv,
const FieldCell<Scal>* fcsm)

After an implementation is constructed, the solution is advanced by calling MakeIteration() and the current
solution is provided by

virtual const FieldCell<Vect>& GetVelocity(Step) const

4

virtual const FieldCell<Scal>& GetPressure(Step) const

virtual const FieldEmbed<Scal>& GetVolumeFlux(Step) const

The volume flux satisfies the continuity equation and the cell-based velocity satisfies the momentum equation.

4.1 SIMPLE

Class Simple implements the solver using the SIMPLE method.

In addition to the requirements of the base class, the constructor takes mappings describing the boundary conditions
and the initial fields.

// par: parameters
Simple(M& m, const EB& eb, const Args& args)

with the initial velocity fcw, face conditions mfc, cell conditions mcc, density fcr, viscosity fcd, force fcf,
projections of well-balanced force fcbp, volume source fcsv and mass source fcsm. Parameters of the solver are
provided by

struct SimplePar {
using Scal = typename Vect::Scal;
Scal vrelax = 0.8; // velocity relaxation factor [0,1]
Scal prelax = 1.; // pressure relaxation factor [0,1]
Scal rhie = 1.; // Rhie-Chow factor [0,1] (0 disable, 1 full)
bool second = true; // second order in time
Vect meshvel = Vect(0); // relative mesh velocity
size_t inletflux_numid = 0; // reduction for id from 0 to numid-1
ConvSc convsc = ConvSc::quick; // convection scheme
Scal convdf = 1.; // deferred correction factor
bool stokes = false;
bool explconv = false; // explicit convection for Conv::imp
bool convsymm = false; // symmetric solver for linear system in convdiff
Conv conv = Conv::imp; // convection-diffusion solver
Scal outlet_relax = 1;
bool explviscous = true; // enable explicit viscous terms

};

4.2 Projection

Class Proj implements the solver using Chorin’s projection.

In addition to the requirements of the base class, the constructor takes mappings describing the boundary conditions
and the initial fields.

// par: parameters
Proj(M& m, const EB& eb, const Args& args)

with the initial velocity fcw, face conditions mfc, cell conditions mcc, density fcr, viscosity fcd, force fcf,
projections of well-balanced force fcbp, volume source fcsv and mass source fcsm. Parameters of the solver are
provided by

5

struct ProjPar {
using Scal = typename Vect::value_type;
Scal vrelax = 1; // velocity relaxation factor [0,1]
Scal prelax = 1.; // pressure relaxation factor [0,1]
bool second = true; // second order in time
Vect meshvel = Vect(0); // relative mesh velocity
size_t inletflux_numid = 0; // reduction for id from 0 to numid-1
ConvSc convsc = ConvSc::quick; // convection scheme
Scal convdf = 1.; // deferred correction factor
bool stokes = false; // Stokes flow
bool convsymm = false; // symmetric solver for linear system in convdiff
Conv conv = Conv::imp; // convection-diffusion solver
bool bcg = true; // Bell-Colella-Glaz scheme
Scal outlet_relax = 1;
Scal inletpressure_factor =

0; // correction factor on inlet with given pressure
bool explviscous = false; // enable explicit viscous terms
bool redistr_adv = false; // use RedistributeCutCellsAdvection()

// if true else RedistributeCutCells()
size_t diffusion_iters = 1; // number of iterations in implicit diffusion
bool diffusion_consistent_guess = false;

};

4.3 Boundary conditions

The boundary conditions are specified by a map from IdxFace to CondFaceFluid, instances of which can be
generated with function solver::Parse() from a string. Value of id is written to field fluidcond in bc.vtk
(see Output).

Table 4.1: Fluid boundary conditions.
class Parse() format description id
NoSlipWallFixed wall <x y z> no-slip wall with fixed velocity 1
InletFixed inlet <x y z> inlet with given velocity 3
InletFlux inletflux <x y z id> inlet with given total flux 3
OutletAuto outlet outlet 4
SlipWall slipwall free-slip wall 2

5 Multilayer VOF

Multilayer VOF is a method for solving the advection equation that can represent multiple interfaces in the same cell.
This enables simulations of foams, suspensions, and other multiphase systems where bubbles and drops that do not
coalesce.

The split conservative advection scheme Weymouth and Yue [1] operates on a volume fraction field and uses the
PLIC reconstruction to compute the fluxes. In three dimensions, one advection step is split into three sub-steps, or
sweeps. To ensure conservation, a divergence term is added explicitly. The normals are estimated using the mixed
Youngs-centered scheme.

The multilayer VOF implements the same advection scheme but operates on multilayer fields. A multilayer field (u,q)
stores mappings between colors q and values u. The colors are real numbers, and none=-1 denotes an empty color.
Assuming that each cell can contain at most L=4 values, the mappings are represented as L-tuples up to reordering.
For example, the following tuples encode a field (u,q) with three values in cell c1 and two values in cell c2

6

u[c1]: {0.2, 0.4, 0.1, 0}
q[c1]: { 0, 1, 2, none}
u[c2]: {0.3, 0.7, 0, 0}
q[c2]: { 1, 2, none, none}

The ordering of tuples is insignificant, so simultaneous permutation of values and colors gives equivalent representa-
tions

u[c1]: {0.4, 0.1, 0.2, 0}
q[c1]: { 1, 2, 0, none}
u[c2]: {0.7, 0, 0.3, 0}
q[c2]: { 2, none, 1, none}

A conventional field can be constructed from a multilayer field by selecting values with a given color. For example,
selecting the values with color qs=2 gives a conventional field us

us[c1]: 0
us[c2]: 0.7

The following pseudocode implements the multilayer VOF method. One advection step is split in the spatial directions
and in three dimensions consists of three substeps, or sweeps.

void Step() {
for (d : {0, 1, 2}) {
{u, q} = Sweep(d, u, v, q, n, a);
{n, a} = Plic(u);

}
q = Recolor(u, q);

}

Given the PLIC reconstruction of the interface, one sweep computes fluxes, updates the volume fractions and propa-
gates the colors to downwind cells

auto Sweep(d, u, v, q, n, a) {
// v: mixture flux
// w: phase flux
// qf: phase color from upwind cell
for (f : faces) {
for (l : layers) {
c = AdjacentCell(f, v[f] > 0 ? 0 : 1); // upwind cell
w(f, l) = PlicFlux(n(c, l), a(c, l), h, v, dt, d);
qf(f, l) = q(c, l);

cd = AdjacentCell(f, v > 0 ? 1 : 0); // downwind cell
if (FindLayer(q, cd, q(c, l)) == kLayerNone) {

ld = FindLayer(q, cd, kClNone);
if (ld != kLayerNone) {
q(cd, ld) = q(c, l);

}
}

}
}
for (c : cells) {
for (l : layers) {
fm = AdjacentCell(c, 0);
fp = AdjacentCell(c, 1);
ds = (v[fp] - v[fm]) * dt / volume;

(continues on next page)

7

(continued from previous page)

wm = w(c, FindLayer(qf, fm, q(c, l)));
wp = w(c, FindLayer(qf, fp, q(c, l)));
dl = (wp - wm) * dt / vol;
u(c, l) += udiv(c, l) * ds - dl;
if (u(c, l) == 0) {

q(c, l) = kClNone;
}

}
}
return {u, q};

}

Function Plic() builds the PLIC reconstruction in interfacial cells and returns normals n and plane constants a:

auto Plic() {
for (c : cells) {
for (l : layers) {
uu = Stencil3(c, u, q, q(c, l));
n(c, l) = Normal(uu);

}
auto navg = Avg(n, q, c);
for (l : layers) {
n(c, l) = (n.dot(navg) > 0 ? -navg : navg);

}
a(c, l) = PlaneConstant(u(c, l), n(c, l), h);

}
return {n, a};

}

Normals n are estimated using the standard Youngs-centered scheme Normal() applied to stencil values assembled
by Stencil3(), which selects values with given color (or zero if the requested color is not found) on the 3x3x3
stencil. After all advection sweeps, Recolor() detects new connected components and recomputes the colors as
described in Connected-component labeling.

The complete implementation of the multilayer VOF is given in src/solver/vofm.ipp.

5.1 Connected-component labeling

After each advection step, the colors need to be updated to detect new connected components. The following function
initializes the color field with unique values, then iteratively joins the colors from adjacent cells by taking the minimal
color until equilibration.

auto Recolor(u, q) {
q_new = InitUnique(u, q);

changed = true;
while (changed) {
changed = false;
q_new = RecolorCorners(u, q, q_new);
for (c : cells) {
for (l : layers) {
for (cn : stencil3(c)) {
ln = FindLayer(q, cn, q(c, l));
if (ln != kLayerNone) {
if (q_new(cn, ln) < q_new(c, l)) {

(continues on next page)

8

https://github.com/cselab/aphros/blob/master/src/solver/vofm.ipp

(continued from previous page)

changed = true;
q_new(c, l) = q_new(cn, ln);

}
}

}
}

}
}
return q_new;

}

To reduce the number of iterations, function RecolorCorners() runs the same algorithm for corners from cubic
subdomains. The colors propagate through the domain faster.

auto RecolorCorners(u, q, q_new) {
// map: mapping from old color to new color
for (c : corners of subdomains) {
for (l : layers) {
for (size_t d : {0, 1, 2}) {

cn = AdjacentCell(c, d);
ln = FindLayer(q, cm, q(c, l));
q1 = q_new(c, l);
q2 = q_new(cn, ln);
map[max(q1, q2)] = min(q1, q2);

}
}

}

changed = true;
while (changed) {
changed = false;
for (q1 in map) {

if (map[q1] in map) {
map[q1] = map[map[q1]];
changed = true;

}
}

}

for (f : faces) {
cm = AdjacentCell(f, 0);
cp = AdjacentCell(f, 1);
for (l : layers) {
q_new(cm, l) = map[q(cm, l)];
q_new(cp, l) = map[q(cp, l)];

}
}
return q_new;

}

9

6 Embedded boundaries

The method of embedded boundaries allows one to solve equations in complex geometries on a Cartesian mesh. The
surface of a solid body is represented by cut cells. A cut cell is obtained by cutting a regular cubic cell with a plane.
Discretization of the equations with the finite volume method remains the same, except that the discrete conservation
law now includes additional boundaries in cut cells.

The functionality related to embedded boundaries is provided in header embed.h.

#include <aphros/solver/embed.h>

A new type FieldEmbed transparently combines FieldFace and FieldCell. The cell-field stores the values
on embedded boundaries. Given a mesh m, a combined field is initialized on the mesh similar to other fields with an
optional default value:

FieldEmbed<Scal> fe(m, 0); // [f]ield [e]mbed

The field can be accessed both by cell- and face-indices. The following code traverses all internal cells and faces and
assigns a value to the field:

for (IdxCell c : m.Cells()) {
fe[c] = 1;

}
for (IdxFace f : m.Faces()) {

fe[f] = 1;
}

A new class Embed<M> defines new iterators and geometric routines that take into account cut cells. The cells and
faces are divided into three groups:

• regular cells (whole cells inside the domain),

• cut cells (cells crossed by the domain boundary),

• excluded cells (cells outside the domain).

The same classification applies to faces

• regular faces (whole faces inside the domain),

• cut faces (faces crossed by the domain boundary),

• excluded faces (cells outside the domain).

An instance of Embed<M>, commonly named as eb, is constructed from a mesh and needs to be initialized from a
level-set function 𝜙 stored in a node-field:

void F(const FieldNode<Scal>& phi) {
auto sem = m.GetSem();
struct {
std::unique_ptr<Embed<M>> eb_;

} * ctx(sem);
if (sem()) {
eb_.reset(new Embed<M>(m));

}
if (sem.Nested()) {
eb_->Init(phi);

}
}

10

Regular cells are those for which 𝜙 > 0 in all adjacent nodes, excluded cells are those for which 𝜙 < 0 in all adjacent
nodes, and other cells are cut cells. The Embed<M> class defines ranges eb.Cells() and eb.Faces() such that
they include regular and cut cells but not excluded cells. Another range eb.CFaces() traverses only cut cells. The
name CFaces comes from Cell Faces. Together, eb.Faces() and eb.CFaces() include all indices for which
an embed-field can be defined. The following code assigns a value to the embed-field in cut cells, regular faces and
cut faces:

for (IdxCell c : eb.CFaces()) {
fe[c] = 1;

}
for (IdxFace f : eb.Faces()) {

fe[f] = 1;
}

Class Embed<M> also defines geometric routines such as eb.GetVolume() and eb.GetArea(). The following
code computes the total volume of the domain and the total area of all boundaries:

Scal vol = 0;
for (IdxCell c : eb.Cells()) {
vol += eb.GetVolume(c);

}
Scal area = 0;
for (IdxFace f : eb.Faces()) {

area += eb.GetArea(f);
}
for (IdxCell c : eb.CFaces()) {

area += eb.GetArea(c);
}

The range of neighbor indices eb.Nci() is limited to non-excluded neighbor faces. The name Nci stands for
Neighbor Cell Index. The following code sums up the values over all faces of one cut cell c:

IdxCell c;
Scal sum = fe[c];
for (size_t q : eb.Nci()) {
IdxFace f = eb.GetFace(c, q);
sum += fe[f];

}

The header defines numerical routines for interpolation and computation of gradients. Some of them require boundary
conditions.

MapEmbedCond mec; // boundary conditions
FieldEmbed<Scal> feu(m);
FieldCell<Scal> fcu(m);
FieldCell<Scal> fci = eb.Interpolate(feu);
FieldEmbed<Scal> fei = eb.Interpolate(fcu, mec);
FieldCell<Vect> fcg = eb.Gradient(feu);
FieldEmbed<Scal> feg = eb.Gradient(fcu, mec);

11

6.1 Advection solver

The routines described above are sufficient to implement an advection solver.

// Advection solver.
// fcu: quantity to advect
// mebc: boundary conditions
// vel: advection velocity
// dt: time step
void Advection0(

FieldCell<Scal>& fcu, const MapEmbed<BCond<Scal>>& mebc,
const FieldEmbed<Scal>& fev, Scal dt, const Embed<M>& eb) {

const auto fcg =
UEmbed<M>::GradientLinearFit(UEmbed<M>::Interpolate(fcu, mebc, eb), eb);

const auto feu =
UEmbed<M>::InterpolateUpwind(fcu, mebc, ConvSc::fou, fcg, fev, eb);

// Compute flux.
FieldEmbed<Scal> fevu(eb, 0);
for (auto f : eb.Faces()) {
fevu[f] = feu[f] * fev[f];

}
for (auto c : eb.CFaces()) {
fevu[c] = feu[c] * fev[c];

}
// Advance in time.
for (auto c : eb.Cells()) {
Scal sum = fevu[c]; // sum of fluxes
for (auto q : eb.Nci(c)) {
sum += fevu[eb.GetFace(c, q)] * eb.GetOutwardFactor(c, q);

}
fcu[c] -= sum * dt / eb.GetVolume(c);

}
}

Table 6.1: Results of advection solver Advection0(): initial (left)
and final (right). Instabilities develop near the boundary.

See full example in examples/103_embed_advection/main.cpp.

The previous implementation suffers from the problem of small cells. Stability requires that the change of the con-
served quantity at one time step does not exceed the cell volume. Therefore, small cells lead to strong restrictions on
the time step. One common remedy is redistribution of the conserved quantity to neighboring cells. Function eb.
RedistributeCutCells() redistributes a conserved quantity from cut cells to their neighboring cells such that
the integral of the quantity does not change. Using this function in the advection solver results in

12

https://github.com/cselab/aphros/blob/master/examples/103_embed_advection/main.cpp

// Advection solver with redistribution from cut cells
// and first order upwind scheme.
void Advection1(

FieldCell<Scal>& fcu, const MapEmbed<BCond<Scal>>& mebc,
const FieldEmbed<Scal>& fev, Scal dt, const Embed<M>& eb) {

const auto fcg =
UEmbed<M>::GradientLinearFit(UEmbed<M>::Interpolate(fcu, mebc, eb), eb);

const auto feu =
UEmbed<M>::InterpolateUpwind(fcu, mebc, ConvSc::fou, fcg, fev, eb);

// Compute flux.
FieldEmbed<Scal> fevu(eb, 0);
for (auto f : eb.Faces()) {
fevu[f] = feu[f] * fev[f];

}
for (auto c : eb.CFaces()) {
fevu[c] = feu[c] * fev[c];

}
// Compute the change at one time step.
FieldCell<Scal> fct(eb, 0);
for (auto c : eb.Cells()) {
Scal sum = fevu[c];
for (auto q : eb.Nci(c)) {
sum += fevu[eb.GetFace(c, q)] * eb.GetOutwardFactor(c, q);

}
fct[c] = -sum * dt;

}
fct = UEmbed<M>::RedistributeCutCells(fct, eb);
// Advance in time.
for (auto c : eb.Cells()) {
fcu[c] += fct[c] / eb.GetVolume(c);

}
}

// Advection solver with redistribution from cut cells
// and second order upwind scheme.
void Advection2(

FieldCell<Scal>& fcu, const MapEmbed<BCond<Scal>>& mebc,
const FieldEmbed<Scal>& fev, Scal dt, const Embed<M>& eb) {

const auto fcg =
UEmbed<M>::GradientLinearFit(UEmbed<M>::Interpolate(fcu, mebc, eb), eb);

auto feu = UEmbed<M>::InterpolateUpwind(fcu, mebc, ConvSc::sou, fcg, fev, eb);
// Compute flux.
FieldEmbed<Scal> fevu(eb, 0);
for (auto f : eb.Faces()) {
fevu[f] = feu[f] * fev[f];

}
for (auto c : eb.CFaces()) {
fevu[c] = feu[c] * fev[c];

}
// Compute the change at one time step.
FieldCell<Scal> fct(eb, 0);
for (auto c : eb.Cells()) {
Scal sum = fevu[c];
for (auto q : eb.Nci(c)) {
sum += fevu[eb.GetFace(c, q)] * eb.GetOutwardFactor(c, q);

}
fct[c] = -sum * dt;

(continues on next page)

13

(continued from previous page)

}
fct = UEmbed<M>::RedistributeCutCells(fct, eb);
// Advance in time.
for (auto c : eb.Cells()) {
fcu[c] += fct[c] / eb.GetVolume(c);

}
}

Table 6.2: Results of first order upwind scheme Advection1() (left)
and second order upwind scheme Advection2() (right). Resdistribu-
tion from cut cells stabilizes the method in both cases.

The fraction of redistributed quantities eb.RedistributeCutCells() does not depend on the velocity or the
time step. While this makes a stable method, the unnecessary redistribution of values may reduce the accuracy.
Another approach would be to use a local stability criterion depending on the velocity

𝑣𝑓∆𝑡

𝑆𝑓 |x𝑐 − x𝑓 |
< CFL0

6.2 Diffusion solver

The diffusion equation illustrates another problem of small cells which arises in computation of gradients. The dif-
fusive fluxes are proportional to the normal gradient of the quantity. Approximations of normal gradients contain the
distance between the face and cell centroids in the denominator.(︁ 𝛿𝑢

𝛿𝑛

)︁
=

𝑢𝑐 − 𝑢𝑓

(x𝑐 − x𝑓) · n𝑓

The following function implements a diffusion solver using this approximation

// Diffusion solver.
// fcu: quantity to advect
// mebc: boundary conditions
// diff: diffusion coefficient
// dt: time step
void Diffusion0(

FieldCell<Scal>& fcu, const MapEmbed<BCond<Scal>>& mebc, Scal diff, Scal dt,
const Embed<M>& eb) {

const auto feg = UEmbed<M>::Gradient(fcu, mebc, eb);
// Compute flux.
FieldEmbed<Scal> fed(eb, 0);

(continues on next page)

14

(continued from previous page)

for (auto f : eb.Faces()) {
fed[f] = feg[f] * diff * eb.GetArea(f);

}
for (auto c : eb.CFaces()) {
fed[c] = feg[c] * diff * eb.GetArea(c);

}
// Advance in time.
for (auto c : eb.Cells()) {
Scal sum = fed[c]; // sum of fluxes
for (auto q : eb.Nci(c)) {
sum += fed[eb.GetFace(c, q)] * eb.GetOutwardFactor(c, q);

}
fcu[c] += sum * dt / eb.GetVolume(c);

}
}

Table 6.3: Results of diffusion solver Diffusion0(): initial (left) and
final (right). Instabilities develop near the boundary.

See full example in examples/104_embed_diffusion/main.cpp.

// Diffusion solver with redistribution to neighbor cells.
void Diffusion1(

FieldCell<Scal>& fcu, const MapEmbed<BCond<Scal>>& mebc, Scal diff, Scal dt,
const Embed<M>& eb) {

const auto feg = UEmbed<M>::Gradient(fcu, mebc, eb);
// Compute flux.
FieldEmbed<Scal> fed(eb, 0);
for (auto f : eb.Faces()) {
fed[f] = feg[f] * diff * eb.GetArea(f);

}
for (auto c : eb.CFaces()) {
fed[c] = feg[c] * diff * eb.GetArea(c);

}
// Compute the change at one time step.
FieldCell<Scal> fct(eb, 0);
for (auto c : eb.Cells()) {
Scal sum = fed[c];
for (auto q : eb.Nci(c)) {
sum += fed[eb.GetFace(c, q)] * eb.GetOutwardFactor(c, q);

}
fct[c] = sum * dt;

(continues on next page)

15

https://github.com/cselab/aphros/blob/master/examples/104_embed_diffusion/main.cpp

(continued from previous page)

}
fct = UEmbed<M>::RedistributeCutCells(fct, eb);
// Advance in time.
for (auto c : eb.Cells()) {
fcu[c] += fct[c] / eb.GetVolume(c);

}
}

// Diffusion solver with redistribution to neighbor cells
// and LoopFaces() to avoid code duplicatoin.
void Diffusion2(

FieldCell<Scal>& fcu, const MapEmbed<BCond<Scal>>& mebc, Scal diff, Scal dt,
const Embed<M>& eb) {

const auto feg = UEmbed<M>::Gradient(fcu, mebc, eb);
// Compute flux.
FieldEmbed<Scal> fed(eb, 0);
eb.LoopFaces([&](auto cf) { // lambda-function applied to faces and

// embedded faces
fed[cf] = feg[cf] * diff * eb.GetArea(cf);

});
// Compute the change at one time step.
FieldCell<Scal> fct(eb, 0);
for (auto c : eb.Cells()) {
Scal sum = fed[c];
for (auto q : eb.Nci(c)) {
sum += fed[eb.GetFace(c, q)] * eb.GetOutwardFactor(c, q);

}
fct[c] = sum * dt;

}
fct = UEmbed<M>::RedistributeCutCells(fct, eb);
// Advance in time.
for (auto c : eb.Cells()) {
fcu[c] += fct[c] / eb.GetVolume(c);

}
}

Table 6.4: Results of diffusion solver Diffusion1() (left) using lin-
ear fit to cell centers to compute the gradient which eliminates the in-
stabilities. Solver Diffusion2() (right) produces the same results
and illustrates the usage of ExecFaces() to execute the same lambda-
function on indices of two types

16

6.3 Taylor-Couette flow

See full example in examples/201_taylor_couette.

Table 6.5: Error norms with grid refinement (left) and error field at
𝑅/ℎ = 25.6 (right).

6.4 Hydrostatic

Single-phase

See full example in examples/203_hydrostatic.

Table 6.6: Pressure (left) and velocity (right).

17

https://github.com/cselab/aphros/blob/master/examples/201_taylor_couette
https://github.com/cselab/aphros/blob/master/examples/203_hydrostatic

Multiphase

See full example in examples/203_hydrostatic.

Table 6.7: Initial density (top left), final density (top right), pressure (bot-
tom left) and velocity (bottom right).

Table 6.8: Evolution of velocity norms.

18

https://github.com/cselab/aphros/blob/master/examples/203_hydrostatic

7 Geometric primitives

Header func/primlist.h provides routines to define level-set functions for a list of geometric primitives such as
spheres and boxes. A primitive is described by

struct Primitive {
using Vect = Vect_;
using Scal = typename Vect::Scal;
static constexpr size_t dim = Vect::dim;

Primitive(std::string name_)
: name(name_), inter([](const Rect<Vect>&) -> bool { return true; }) {}

Primitive() : Primitive("") {}
friend std::ostream& operator<<(std::ostream& o, const Primitive<Vect>& p) {
o << "name='" << p.name << "'";
o << " mod='" << (p.mod_minus ? "-" : "") << (p.mod_and ? "&" : "") << "'";
return o;

}

std::string name;
bool mod_minus = false;
bool mod_and = false;
std::function<Scal(const Vect&)> ls; // level-set
std::function<bool(const Rect<Vect>&)> inter; // true if intersects rectangle
std::function<Vect(const Vect&)> velocity; // velocity

Vect c; // center XXX adhoc for GetSphereOverlap
Vect r; // radius XXX adhoc for GetSphereOverlap

};

Function GetPrimitives() parses a stream with a list of primitives.

// Parses a list of primitives in stream buf.
// edim: effective dimension, 2 or 3 (ignores z-component if edim=2)
static std::vector<Primitive> GetPrimitives(std::istream& buf, size_t edim)

Available primitives and their parameters:

sphere Ellipsoid with principal axes aligned with the coordinate axes. Parameters: cx cy cz (center), rx ry
rz (half-size);

box Rectangular box with sides aligned with the coordinate planes. Parameters: cx cy cz (center), rx ry rz
(half-size);

ring Torus. Parameters: cx cy cz (center), nx ny nz (normal), r (radius), th (thickness);

smooth_step Smooth step Almgren et al. [2]. Parameters: cx cy cz (center), nx ny nz (normal), tx ty
tz (tangent), ln (size along normal), lt (size along tangent);

cylinder Right circular cylinder. Parameters: cx cy cz (center), nx ny nz (normal), r (radius), n0 n1
(range along normal relative to center);

polygon Cylinder bounded by parallel planes with the plane section specified as a sequence of non-intersecting
polygons. Parameters: ox oy oz (origin), nx ny nz (normal), ux uy uz (direction of 2D x-axis), n0
n1 (range along normal relative to origin), scale (factor applied to 2D vertices), x y ... (2D vertices of all
polygons, first and last vertices of each polygon must coincide);

ruled Ruled surface bounded by parallel planes with two plane sections on the opposite sides specified as two
sequences of non-intersecting polygons. Parameters: ox oy oz (origin), nx ny nz (normal), ux uy uz

19

(direction of 2D x-axis), n0 n1 (range along normal relative to origin, sides 0 and 1), scale0 scale1
(factors applied to 2D vertices on sides 0 and 1), x y ... (2D vertices of all polygons on side 0, first and last
vertices of each polygon must coincide), x y ... (same but on side 1).

Each primitive defines a level-set function which is positive inside the body. By default, the resulting level-set function
is composed from the list of primitives using the union operation (taking the maximum value). To change the default
operation, modifiers can be added before the name of the primitive:

• -: minus, multiply level-set by -1;

• &: intersection, take the minimum with the current level-set.

Example of a list of primitives

cx cy cz rx ry rz
box 0.7 0.3 0.4 0.25 0.2 0.15

&cylinder 0.55 0.25 0.5 0 0 1 0.22 -1 1
&-cylinder 0.7 0.3 0.4 1 0.5 0 0.07 -1 1

cx cy cz rx ry rz
sphere 0.3 0.3 0.7 0.25 0.2 0.15

&-box 0.45 0.3 0.7 0.1 0.2 0.03

cx cy cz nx ny nz r th
ring 0.3 0.7 0.5 0 1 0.5 0.15 0.05

cx cy cz nx ny nz tx ty tz ln lt
smooth_step 0.5 0.5 0.1 0 0 1 0 1 0 0.05 0.1

cx cy cz tx ty tz r t0 t1
cylinder 0.75 0.7 0.3 -2 1 0.5 0.1 -0.2 0.2

-sphere 1 0.2 0 1.3
&-cylinder 0.1 0.8 0.8 -2 1 0.5 0.1 -0.2 0.2

(see setup in examples/200_primlist)

20

https://github.com/cselab/aphros/blob/master/examples/200_primlist

Parameter list_ls in the configuration defines the method of computing the volume fraction field from the level-set
functions

set int list_ls 0 step-wise approximation (1 if level-set is positive, 0 otherwise);

set int list_ls 1 linear approximation with normal and plane constant computed from the level-set at the cell
center, does not support modifiers;

set int list_ls 2 using the overlap library to compute the exact volume fraction cut by an ellipsoid (only
valid for primitive sphere);

set int list_ls 3 linear approximation with normal and plane constant computed from the level-set on mesh
nodes, supports modifiers.

8 Boundary conditions

Header func/init_u.h provides routines to describe boundary conditions based on primitives. The list of bound-
ary conditions is a list of code blocks with primitives.

8.1 Code blocks

A code block is described by

struct CodeBlock {
std::string name;
std::string content;

};

and has the following format

NAME {
CONTENT

}

21

where NAME does not contain { or } and CONTENT may contain only matching {...}.

Examples of code blocks

name {
content

}

name { content }

name with spaces {
content { inside {inside} braces }

}

The following function extracts a list of blocks from a stream

// Parses a stream and returns a list of code blocks.
std::vector<CodeBlock> ParseCodeBlocks(std::istream& f)

Leading and trailing whitespaces are stripped.

8.2 Groups of primitives

Boundary conditions are selected inside groups of primitives organized as code blocks. The name of the block is the
boundary condition to set and the content is a list of primitives describing a single level set function. Affected are cut
cells and faces on the domain boundary.

wall 0 0 0 {
box 0 0 0 10

}
wall 1 0 0 {

sphere 0.7 0.5 0.5 0.2
}
slipwall {

sphere 0.3 0.5 0.5 0.2
}
inlet 1 0 0 {

sphere 0.5 0.7 0.5 0.2
}
symm {

sphere 0.5 0.5 0.7 0.2
sphere 0.5 0.5 0.3 0.2

}

The following function parses parses a file and returns a MapEmbed object containing face and cut-cell conditions.

MapEmbed<size_t>, MapEmbed<size_t>, std::vector<std::string>>
ParseGroups(

std::istream& fin, const MEB& eb, const FieldCell<bool>& fc_innermask)

22

9 Output

Simulations produce output of various types:

• statistics (stdout)

• fields (HDF5, plain or XML VTK)

• PLIC polygons (polydata legacy VTK)

• marching cubes triangles (polydata legacy VTK)

• boundary conditions (polydata legacy VTK)

Boundary conditions are written to bc.vtk if enabled by set int dumpbc 1. It contains cell fields block
(block id), cond (conditions for advection) and condfluid (conditions for fluid, see Fluid boundary conditions.).

The output is implemented in function

void DumpBcPoly(
const std::string filename, const MapEmbed<size_t>& me_group,
const MapEmbed<typename MEB::Scal>& me_contang, const MEB& meb,
typename MEB::M& m)

10 Tools

10.1 AWK for CSV files

Synopsis

ap.cawk [-v var=value] [‘prog’] [CSV ..]

Description

Examples

$ cat example.csv
x,y
1,10
2,20
$ ap.cawk '{print $x + $y}' example.csv
11
22

$ ap.cawk 'NR == 2 {print HEADER} {print $x + $y}' q
x,y
11
22
33

23

Source

10.2 Format

Synopsis

ap.format [-y]

runs clang-format for all C/C++ files found recursively from current directory.

-y Force ‘yes’ for all questions

Configuration

The configuration is based on Google code style with modifications.

.clang-format

Source

deploy/scripts/format

10.3 Histogram

Synopsis

ap.hist [–density|–cumulative] [–bins BINS] [–range L R]

print histogram of STDIN as columns [center,density,left,right]

Examples

seq 10 | ap.hist --density
seq 10 | ap.hist --cumulative

Source

deploy/scripts/hist

11 Library

11.1 VOF advection

Synopsis

Volume-of-fluid advection solver with PLIC reconstruction.

24

https://github.com/cselab/aphros/blob/master/.clang-format
https://github.com/cselab/aphros/blob/master/deploy/scripts/format
https://github.com/cselab/aphros/blob/master/deploy/scripts/hist

Parameters

struct VofPar {
using Scal = typename M::Scal;
using Vect = typename M::Vect;

size_t dim = 3; // dimension (dim=2 assumes zero velocity in z)
Scal clipth = 1e-10; // vf clipping threshold
Scal filterth = 0; // orphan filtering threshold
bool recolor = true; // run connected component labeling on every step
bool recolor_unionfind = true; // use union-find algorithm
bool recolor_reduce = true; // reduce set of colors to integers
bool recolor_grid = true; // use grid heuristic
Scal clfixed = -1; // if >= 0, value for color at point clfixed_x
Vect clfixed_x = Vect(1e10);
bool cloverride = false; // XXX adhoc if clear1<1, override color with 0
bool sharpen = false;
Scal sharpen_cfl = 0.5;
size_t layers = 4;
Scal avgnorm0 = 1; // original normal with sum(u)<avgnorm0
Scal avgnorm1 = 1; // overriden normal with sum(u)>=acgnorm1
Scal coalth = 1e10;
int verb = 0;
bool bcc_reflectpoly = true; // reflection for DumpPolyMarch
Scal dumppolymarch_fill = -1; // fill cells outside
bool vtkbin = true;
bool vtkmerge = true;
bool vtkpoly = true; // dump vtk polygins instead of lines
Scal vtkiso = 0.5;
enum class Scheme { plain, aulisa, weymouth };
Scheme scheme = Scheme::weymouth;
// Enables extrapolation to halo or cut cells,
// required for the contact angle model.
// Extrapolate volume fraction to excluded cells before computing normals
// Extrapolate volume fraction, plane constant and normals to cut cells
// after the advection step.
// If embedded boundaries are enabled, supports only periodic condtitions.
bool extrapolate_boundaries = false;
Labeling<M>* labeling = nullptr; // Pointer to implementation of

// connected component labeling.
// Defaults to Recolor().

};

Source

src/solver/vof.h
src/solver/vof.cpp
src/solver/vof.ipp

25

https://github.com/cselab/aphros/blob/master/src/solver/vof.h
https://github.com/cselab/aphros/blob/master/src/solver/vof.cpp
https://github.com/cselab/aphros/blob/master/src/solver/vof.ipp

Example

examples/100_advection/main.cpp

// Created by Petr Karnakov on 24.12.2019
// Copyright 2019 ETH Zurich

#undef NDEBUG
#include <cassert>
#include <iostream>
#include <memory>
#include <string>

#include <distr/distrbasic.h>
#include <solver/vof.h>

using M = MeshCartesian<double, 3>;
using Scal = typename M::Scal;
using Vect = typename M::Vect;

void Run(M& m, Vars&) {
auto sem = m.GetSem();

struct {
std::unique_ptr<Vof<M>> as; // advection solver
FieldCell<Scal> fc_src; // volume source
FieldEmbed<Scal> fe_flux; // volume flux
MapEmbed<BCondAdvection<Scal>> mf_cond; // face conditions

} * ctx(sem);

auto& as = ctx->as;
const Scal tmax = 1.;
const Vect vel(0.5, 0.3, 0.1);
const Scal cfl = 0.5;

if (sem("init")) {
auto& fc_src = ctx->fc_src;
auto& fe_flux = ctx->fe_flux;
auto& mf_cond = ctx->mf_cond;

fc_src.Reinit(m, 0);
fe_flux.Reinit(m, 0);
for (auto f : m.Faces()) {
fe_flux[f] = vel.dot(m.GetSurface(f));

}
FieldCell<Scal> fccl(m, 0); // initial color
FieldCell<Scal> fcu(m, 0); // initial volume fraction
for (auto c : m.Cells()) {
fcu[c] = (m.GetCenter(c).dist(Vect(0.5, 0.5, 0.5)) < 0.2);

}
const Scal dt = cfl * m.GetCellSize()[0] / vel.norm();
typename Vof<M>::Par p;
as.reset(

new Vof<M>(m, m, fcu, fccl, mf_cond, &fe_flux, &fc_src, 0., dt, p));
}
sem.LoopBegin();
if (sem.Nested("start")) {
as->StartStep();

(continues on next page)

26

https://github.com/cselab/aphros/blob/master/examples/100_advection/main.cpp

(continued from previous page)

}
if (sem.Nested("iter")) {
as->MakeIteration();

}
if (sem.Nested("finish")) {
as->FinishStep();

}
if (sem("checkloop")) {
if (as->GetTime() >= tmax) {

sem.LoopBreak();
}

}
if (sem("dump")) {
m.Dump(&as->GetField(), "u");

}
if (sem()) {
}
sem.LoopEnd();

}

int main(int argc, const char** argv) {
std::string conf = R"EOF(

set int bx 1
set int by 1
set int bz 1

set int bsx 16
set int bsy 16
set int bsz 16

set int px 1
set int py 1
set int pz 1
)EOF";

MpiWrapper mpi(&argc, &argv);
return RunMpiBasicString<M>(mpi, Run, conf);

}

12 Log

12.1 Surface tension as gradient

2018-08-30 22:08:47

Goal: zero integral of force

What: surface tension as ∇(𝜅𝛼) on faces, curvature in cells copied from neighbour faces if nan.

Result: instability for test of single drop equilibrium,

Data: doc/sphinx/src/log/log01_grad_ka

• doc/sphinx/src/log/log01_grad_ka/grad_ka.mp4: surface tension as ∇(𝜅 * 𝛼)

• doc/sphinx/src/log/log01_grad_ka/k_grad_a.mp4: surface tension as 𝜅∇𝛼

27

https://github.com/cselab/aphros/blob/master/doc/sphinx/src/log/log01_grad_ka
https://github.com/cselab/aphros/blob/master/doc/sphinx/src/log/log01_grad_ka/grad_ka.mp4
https://github.com/cselab/aphros/blob/master/doc/sphinx/src/log/log01_grad_ka/k_grad_a.mp4

• doc/sphinx/src/log/log01_grad_ka/k_grad_a_kmean.mp4: mean curvature on face if both cells contain interface

12.2 Particle normal displacement

2018-09-02 09:41:49

Goal: reduce spurious flow and deformation for single drop equilibrium

What: particle strings without normal displacement, position of central particle fixed at the interface line center

Result: deformation of the interface greatly reduced, probably due to stronger coupling or penalization of deformed
interfaces

Data: doc/sphinx/src/log/log02_dn

• doc/sphinx/src/log/log02_dn/dn0.mp4: without normal displacement

• doc/sphinx/src/log/log02_dn/dn1.mp4: with normal displacement

12.3 march=native

2018-09-09 11:59:47

Goal: use automatic vectorization and specific optimizations

What: add -march=native to CMAKE_C_FLAGS and CMAKE_CXX_FLAGS

Result: slight improvement of performance (3.60 vs 3.76 s for confdiff:01:assemble) with 64 cores on Euler

Data: doc/sphinx/src/log/log03_native:

• out_std: standard flags

• out_native: -march=native

12.4 max_iter

2018-09-12 14:03:27

Goal: choose optimal number of iterations max_iter

What: Taylor-Green with bubbles (sim06) with max_iter=1,2,3,4,5 and convsc=cd,quick.

Result

• qualitatively different trajectories for max_iter=1,2;

• convergence at max_iter=4

• no major difference between cd and quick,

• no difference between simpler=0 and 1

Data: doc/sphinx/src/log/log04_maxit

• kedr.pdf: kinetic energy dissipation rate

• traj.pdf: x-component of trajectory of bubble 2

28

https://github.com/cselab/aphros/blob/master/doc/sphinx/src/log/log01_grad_ka/k_grad_a_kmean.mp4
https://github.com/cselab/aphros/blob/master/doc/sphinx/src/log/log02_dn
https://github.com/cselab/aphros/blob/master/doc/sphinx/src/log/log02_dn/dn0.mp4
https://github.com/cselab/aphros/blob/master/doc/sphinx/src/log/log02_dn/dn1.mp4
https://github.com/cselab/aphros/blob/master/doc/sphinx/src/log/log03_native
https://github.com/cselab/aphros/blob/master/doc/sphinx/src/log/log04_maxit

12.5 Number of particles and strings

Goal: check the influence of the part_np and part_ns in curvature estimator

What: Free-field coalescence of bubbles based on sim04_univel

Result

• slight differences in shapes comparing np=5,0 and ns=2,3

Data: doc/sphinx/src/log/log05_coalnp

• gen1_ns3_np5: configuration

• nx064_ns?_np?.png: shapes at t=0.466 with nx=64

• nx128_ns2_np9.png: shapes at t=0.466 with nx=128

12.6 Number of iterations for coalescence

Goal: check the influence of the min_iter and tol on bubble coalescence

What: Free-field coalescence of bubbles based on sim04_univel/case/partstrcoal

Result

• negligible difference in trajectories between default and min_iter=10

Data: doc/sphinx/src/log/log06_coaliter

• nx*iter*: configuration, data, movie

• a.gnu: gnuplot script

12.7 Relaxation parameters

2019-03-21 22:48:56

Goal: check the influence of vrelax and prelax on bubble coalescence

What: Near-wall coalescence of bubbles with vrelax=0.8,prelax=0.8 and vrelax=0.9,prelax=1

Result

• spurious oscillations in the pressure field (wforce) with vrelax=0.9 after the bubble detachment

• no effect on x- and y-trajectories, slower rising in z after detachment

• changed default parameters for sim04 to prelax=0.8, vrelax=0.8 and min_iter=4

Data: doc/sphinx/src/log/log07_vrelax

• gen1: generator of parameters for sim04/gen

• wforce: force acting on z=0 and z=1

• out, stat.dat: log and statistics

29

https://github.com/cselab/aphros/blob/master/doc/sphinx/src/log/log05_coalnp
https://github.com/cselab/aphros/blob/master/doc/sphinx/src/log/log06_coaliter
https://github.com/cselab/aphros/blob/master/doc/sphinx/src/log/log07_vrelax

12.8 Reduced usage of GetCenter

2019-04-27 01:19:03

Goal: Performance improvement.

What: Reduced usage of GetCenter and GetVectToCell. Test of the Taylor-Green vortex with bubbles.

Result: Speedup of 15%.

Data doc/sphinx/src/log/log08_getcenter

• tg: setup

• tg0_*: timings before

• tg1_*: timings after

12.9 Debug linear solver with ConvertLsCompact

2019-08-15 10:04:39

Goal: Fix sim12_ringgauss after reimplementing simple.ipp with ConvertLsCompact in 48fa3cf0.
Iterations for pressure correction diverged.

What: Bisection between 1ffd55c5 from Jan 12 2019 and 9cb90989 from Aug 14 2019. Complication
from another bug in InitVort() which attempted to use uninitialized fs_ in hydro.h (fixed by patch).

Result: Found the problem by printing the coefficients of the linear system before and after ConvertLs() or
ConvertLsCompact(). The problem appeared from changing the order of stencil cells. In sim12, the symmetric
linear solver is called twice: for initialization of vorticity and for pressure correction. Then Hypre is apparently
initialized only once and that instance is used for both cases which leads to the wrong order of coefficients.

Data: doc/sphinx/src/log/log09_debug_linear

• patch: fix for InitVort()

• r: tool to apply patch and rebuild

• simple_{bad,good}.ipp: two versions of simple.ipp

• min: minimal simulation setup

12.10 Registered modules in Ubuntu

2020-06-03 11:34:54

Ubuntu has --as-needed by default (seen from gcc -dumpspecs) which makes the linker ignore unused li-
braries and, in particular, the implementations of modules (e.g. init_contang.so).

30

https://github.com/cselab/aphros/blob/master/doc/sphinx/src/log/log08_getcenter
https://github.com/cselab/aphros/blob/master/doc/sphinx/src/log/log09_debug_linear

12.11 VTK merge, comparison of floats with tolerance

2020-06-13 21:56:35

ConvertMerge in dump/vtk.h mapped each Vect to a hash and used the hash to merge closely located points
together (up to tolerance tol). This effectively split the space of Vect to partitions. However, if two points are
located close to the boundary between two partitions, they can be arbitrarily close but have different hash values.

The solution was to check compare against the hash of neighboring points (from vertices of a cube) when looking for
an existing hash.

Minimal example that gave vertices of rank 1: doc/sphinx/src/log/log10_vtkmerge.

The opposite problem: hash collisions of distant points. Example is in log10_vtkmerge/hash_collision. To
fix, changed the map from hash->index to Vect->index (ensures exact comparison of points) and introduced
canonical(x) to get a single point from the cell of size tol.

12.12 Explicit part of viscous stress

2021-06-11 15:32:27

The viscous stress tensor has the form 𝜇(∇u + ∇u𝑇). Parameter int explviscous controls whether the second
term is included in the discretization. Setting explviscous=0 changes the approximated tensor to 𝜇∇u. This
omitted term 𝜇∇u𝑇 is significant if the dynamic viscosity is non-uniform.

The following test case of a rising bubble (based on http://basilisk.fr/src/test/rising.c) shows a small difference. See
full example in examples/208_rising.

Table 12.1: Bubble shapes at 𝑡 = 3

31

https://github.com/cselab/aphros/blob/master/doc/sphinx/src/log/log10_vtkmerge
http://basilisk.fr/src/test/rising.c
https://github.com/cselab/aphros/blob/master/examples/208_rising

13 Contributing

13.1 Style guide

Use Google C++ Style Guide.

Loop indices:

• i - generic

• c - IdxCell

• f - IdxFace

• w - MIdx

• d - direction

• d - index 0..dim-1

References

[1] Gabriel D Weymouth and Dick K-P Yue. Conservative volume-of-fluid method for free-surface simulations on
cartesian-grids. Journal of Computational Physics, 229(8):2853–2865, 2010.

[2] Ann S Almgren, John B Bell, Phillip Colella, and Tyler Marthaler. A cartesian grid projection method for the
incompressible euler equations in complex geometries. SIAM Journal on Scientific Computing, 18(5):1289–1309,
1997.

[3] S Mohammad H Hashemi, Petr Karnakov, Pooria Hadikhani, Enrico Chinello, Sergey Litvinov, Christophe Moser,
Petros Koumoutsakos, and Demetri Psaltis. A versatile and membrane-less electrochemical reactor for the elec-
trolysis of water and brine. Energy & Environmental Science, 12(5):1592–1604, 2019.

[4] Petr Karnakov, Fabian Wermelinger, Michail Chatzimanolakis, Sergey Litvinov, and Petros Koumoutsakos. A
high performance computing framework for multiphase, turbulent flows on structured grids. In Proceedings of the
Platform for Advanced Scientific Computing Conference, 1–9. 2019.

[5] Petr Karnakov, Sergey Litvinov, and Petros Koumoutsakos. A hybrid particle volume-of-fluid method for curvature
estimation in multiphase flows. International Journal of Multiphase Flow, 125:103209, 2020.

[6] Zhong Yi Wan, Petr Karnakov, Petros Koumoutsakos, and Themistoklis P Sapsis. Bubbles in turbulent flows:
data-driven, kinematic models with history terms. International Journal of Multiphase Flow, 129:103286, 2020.

[7] Petr Karnakov, Sergey Litvinov, Jean M Favre, and Petros Koumoutsakos. Breaking waves: to foam or not to
foam? Physical Review Fluids, 5(11):110503, 2020.

[8] Petr Karnakov, Fabian Wermelinger, Sergey Litvinov, and Petros Koumoutsakos. Aphros: high performance soft-
ware for multiphase flows with large scale bubble and drop clusters. In Proceedings of the Platform for Advanced
Scientific Computing Conference, 1–10. 2020.

[9] Petr Karnakov, Sergey Litvinov, and Petros Koumoutsakos. Computing foaming flows across scales: from break-
ing waves to microfluidics. arXiv preprint arXiv:2103.01513, 2021.

32

https://google.github.io/styleguide/cppguide.html

	Introduction
	Communication
	Convection-diffusion equation
	Implicit solver
	Explicit solver

	Navier-Stokes equations
	SIMPLE
	Projection
	Boundary conditions

	Multilayer VOF
	Connected-component labeling

	Embedded boundaries
	Advection solver
	Diffusion solver
	Taylor-Couette flow
	Hydrostatic

	Geometric primitives
	Boundary conditions
	Code blocks
	Groups of primitives

	Output
	Tools
	AWK for CSV files
	Format
	Histogram

	Library
	VOF advection

	Log
	Surface tension as gradient
	Particle normal displacement
	march=native
	max_iter
	Number of particles and strings
	Number of iterations for coalescence
	Relaxation parameters
	Reduced usage of GetCenter
	Debug linear solver with ConvertLsCompact
	Registered modules in Ubuntu
	VTK merge, comparison of floats with tolerance
	Explicit part of viscous stress

	Contributing
	Style guide

	References

