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ABSTRACT
We present the high performance implementation of a new algo-
rithm for simulating multiphase flows with bubbles and drops that
do not coalesce. The algorithm is more efficient than the standard
multi-marker volume-of-fluid method since the number of required
fields does not depend on the number of bubbles. The capabilities
of our methods are demonstrated on simulations of a foaming wa-
terfall where we analyze the effects of coalescence prevention on
the bubble size distribution and show how rising bubbles cluster
up as foam on the water surface. Our open-source implementation
enables high throughput simulations of multiphase flow, supports
distributed as well as hybrid execution modes and scales efficiently
on large compute systems.
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•Computingmethodologies→Modelingmethodologies;Mas-
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1 INTRODUCTION
Many industrial processes and natural phenomena involve multi-
phase flows with large clusters of bubbles and drops. The presence
and size of these clusters depends on the process of bubble coales-
cence. When two bubbles or drops collide, the liquid film between
them gets thinner and finally breaks, leading to coalescence. How-
ever, the presence of surfactants [11] or other impurities, such as
electrolytes [7], in the liquid, can delay or prevent coalescence. Col-
lisions of bubbles without coalescence are also observed in clean
liquids free of surfactants if the film drainage time is sufficiently
large [4].

Three factors contribute to the inhibition of coalescence: sur-
factants, viscosity and the Marangoni flow [26]. Surfactants are
chemical compounds that tend to accumulate at the interface and
alter its properties. In particular, they make the interface elastic
and therefore reduce its sensitivity to perturbations. Viscosity of
liquids creates shear stresses and increases the time of the film
drainage. Finally, the Marangoni flow occurs in the direction of the
surface tension gradients and brings additional liquid to the film.
Such gradients are caused by a falling concentration of gas (e.g.
due to diffusion into bubbles) or differences in temperature. These
mechanisms explain how a very thin film can be stable.

Themodeling and simulation of inhibition of coalescence presents
a number of numerical challenges. The liquid film between bubbles
can be arbitrarily thin, while the spatial scales resolved by nu-
merical simulations are finite. Front-capturing and front-tracking
methods are two classes of numerical methods commonly used
for flows with interfaces. These methods have different capabili-
ties in relation to coalescence. Front-capturing methods, such as
the volume-of-fluid [22] or level-set methods [24], represent the
interface on a fixed grid, and one computational cell can not con-
tain more than one interface. Therefore, bubbles and drops always
coalesce at distances shorter than one cell. Opposite to them are
front tracking methods [25] that represent the interface with con-
nected particles. They allow multiple interfaces in one cell but
require explicit re-connection of particles to describe breakup and
coalescence.

Front capturing methods remain the main tool for simulations of
flows with bubbles and drops [12]. Consequently, there have been
developments to extend these methods to cases of non-coalescing
bubbles. One approach is to represent bubbles with separate marker
functions, volume fractions [6] or level-sets [3, 18], and solve the

https://doi.org/10.1145/3394277.3401856
mailto:petros@ethz.ch
https://doi.org/10.1145/3394277.3401856


PASC ’20, June 2020, Geneva, Switzerland P. Karnakov, F. Wermelinger, S. Litvinov, P. Koumoutsakos

advection equation independently for each field. However, this
becomes computationally expensive for systems with many bubbles.
Another approach uses a single level-set function and applies a
Voronoi reconstruction near the interface to advance the level-set
function [20].

We propose an algorithm that implements the multi-marker
volume-of-fluid method [6] but the number of required marker
functions does not depend on the number of bubbles. This results
in a particularly computationally efficient implementation for mul-
tiphase flow simulations.

The paper is organized as follows. Section 2 describes the al-
gorithm and the corresponding model for multiphase flows with
surface tension. We discuss aspects of the high-performance com-
puting (HPC) implementation of our flow solver Aphros [1] in
Section 3 and present verification tests in Section 4. Finally, in
Section 5 we demonstrate the capabilities of our algorithm on simu-
lations of a foaming waterfall which involves the phenomena of air
entrainment, bubble breakup and foam formation. The source code
of our solver, documentation and examples of simulation setups
are available online1.

2 NUMERICAL MODEL
2.1 Flow equations
A two-component incompressible flow is described by the Navier-
Stokes equations for the mixture velocity 𝒖 and pressure 𝑝

∇ · 𝒖 = 0 , (1)

𝜌

( 𝜕𝒖
𝜕𝑡

+ (𝒖 · ∇) 𝒖
)
= −∇𝑝 + ∇ · 𝜇 (∇𝒖 + ∇𝒖𝑇 ) + 𝒇𝜎 + 𝜌𝒈 (2)

and the advection equation for the volume fraction 𝛼

𝜕𝛼

𝜕𝑡
+ (𝒖 · ∇) 𝛼 = 0 , (3)

with the mixture density 𝜌 = (1−𝛼)𝜌1+𝛼𝜌2, dynamic viscosity 𝜇 =

(1−𝛼)𝜇1+𝛼𝜇2 and gravitational acceleration 𝒈. The surface tension
force is defined as 𝒇𝜎 = 𝜎𝜅∇𝛼 with the surface tension coefficient
𝜎 and interface curvature 𝜅.

We use a finite volume discretization based on Chorin’s projec-
tion method [5] with the second order backward discretization in
time and iterative corrections. The advection equation is solved us-
ing the VOF method with piecewise linear PLIC reconstruction [23]
and the fluxes computed using the conservative split technique [28].
As required for the surface tension term, we compute the interface
curvature using the method of particles [15].

2.2 Coalescence prevention
Standard formulations of the volume-of-fluid method are unable
to describe situations where one cell contains more than one inter-
face. Therefore, if two bubbles approach each other at a distance
below one computational cell, they always coalesce. One standard
technique to treat multiple interfaces in the same cell is the multi-
marker volume-of-fluid method [6]. The method places each object
in a separate volume fraction field and solves the advection equation

1Aphros: https://github.com/cselab/aphros

combined layer 1 layer 2

Figure 1: Multiple layers with color functions. Combined
field can describe overlapping interfaces, while each layer
has at most one bubble per cell.

for each field independently

𝜕𝛼𝑙

𝜕𝑡
+ (𝒖 · ∇) 𝛼𝑙 = 0 , (4)

where 𝑙 = 1 . . . 𝐿 and 𝐿 is the number of volume fraction fields. Each
object (e.g. bubble or droplet) then belongs to a separate volume
fraction field such that 𝐿 = 𝑁bubbles. While this method prevents
coalescence of bubbles, each bubble requires its own volume frac-
tion field. Therefore, describing systems with many bubbles using
this method is computationally expensive as the cost of this method
scales as O(𝑁bubbles 𝑁cells).

On a structured grid, the discretization of these advection equa-
tions is based on the standard PLIC technique [2, 23]. First, the
normal vectors 𝒏𝑙 are estimated from the volume fraction field 𝛼𝑙 .
Then, the fluid volume in each cell is reconstructed by a polyhedron,
and the fluxes are calculated by deforming the polyhedron accord-
ing to the given velocity field 𝒖. One time step of this discretization
can be schematically written in terms of discrete operatorsA andN

𝛼
𝑙,new
𝑖

= A
(
𝑆𝑖 [𝛼𝑙 ], 𝑆𝑖 [𝒏𝑙 ]

)
, (5)

𝒏𝑙,new
𝑖

= N
(
𝑆𝑖 [𝛼𝑙 ]

)
, (6)

where 𝑖 ∈ Ω is the index of cells in the computational domain Ω,
𝑆𝑖 is indices of cells in the 3 × 3 × 3 stencil centered at 𝑖 and 𝑆𝑖 [𝜙]
is a list of values of a field 𝜙 in stencil 𝑆𝑖

𝑆𝑖 [𝜙] =
[
𝜙 𝑗 , 𝑗 ∈ 𝑆𝑖

]
. (7)

We propose an algorithm that implements the multi-marker
volume-of-fluid method but has the computational cost that does
not depend on the number of bubbles in the simulation. In a system
consisting of many bubbles, each volume fraction field (4) would
contain only one bubble and would be empty away from it. This
indicates that keeping track of all volume fraction fields is redun-
dant. Instead, we assign each bubble with a unique color 𝑞 ∈ R and
store the colors of all bubbles in discrete fields 𝑞𝑙 : Ω → R. Fields
𝛼𝑙 store the corresponding volume fractions. The pairs (𝛼𝑙 , 𝑞𝑙 ) are
referred to as layers, and the combined field (𝛼, 𝑞) can store multi-
ple values in the same cell distinguished by colors. We modify the
discretization of the advection equations (5) to take into account the
color functions. The discrete operators are now applied to stencils
assembled locally for a given pair of cell index and color

𝛼
𝑙,new
𝑖

= A
(
𝑆𝑖 [𝛼𝑙 , 𝑞𝑙𝑖 ], 𝑆𝑖 [𝒏

𝑙 , 𝑞𝑙𝑖 ]
)
, (8)

𝒏𝑙,new
𝑖

= N
(
𝑆𝑖 [𝛼𝑙 , 𝑞𝑙𝑖 ]

)
, (9)

https://github.com/cselab/aphros
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where 𝑆𝑖 [𝜙, 𝑞] selects values of a field 𝜙 from the neighboring
cells 𝑆𝑖 and all layers having the same color 𝑞

𝑆𝑖 [𝜙, 𝑞] =
[
𝜙𝑙𝑗 , 𝑗 ∈ 𝑆𝑖 and 𝑙 : 𝑞𝑙𝑗 = 𝑞

]
. (10)

The corresponding surface tension force is defined from all layers
as

𝒇𝜎 =

𝐿∑︁
𝑙=1

𝜎𝜅𝑙∇𝛼𝑙 , (11)

where 𝜅𝑙
𝑖
is the interface curvature computed from cells of color 𝑞𝑙

𝑖
.

Figure 1 illustrates how the volume fraction field is represented on
fields withmultiple layers. For the number of layers we choose 𝐿 = 4
as justified in Section 4.1.

3 HIGH PERFORMANCE IMPLEMENTATION
The software design of the present solver is described in [16]. In
this section we address shortcomings that have been outlined in the
previous work and present improvements on the software regarding
halo cell synchronization and compute-transfer overlap.

The test case used for the benchmark results presented here con-
sists of initially cubic cavities, homogeneously distributed in the
computational domain. The amount of cavities increases propor-
tionally with the resolution and corresponds to the case presented
in Section 5 at comparable resolution. The simulation is advected for
ten time steps using a sinusoidal velocity field and periodic bound-
ary conditions. The time to solution is defined by the accumulated
time to perform the time steps. In the case of multiple MPI ranks
the reported time is the average over all ranks. The benchmark does
not take into account I/O or in-situ post-processing operations. The
data has been collected on the Cray XC50 compute nodes of the
Piz Daint supercomputer at the Swiss National Supercomputing
Center (CSCS) using the GNU 8.3.0 compiler tools.

3.1 Zero-copy exchange of halo cells
The memory for the storage of structured computational data is
maintained by the structured grid library Cubism [8, 27]. Memory
is allocated in contiguous chunks for the full computational domain.
Chunks are further divided into compute blockswhich represent the
smallest entity that can be queried by the user to perform operations
on [16]. Temporary copies of compute blocks are created when the
user requests a block for stencil operation, where the number of halo
cells is defined in a stencil object that allows for querying halos
on faces, edges and corners of the block. Halo cells at irregular
locations are either obtained from an asynchronously managed
MPI communication buffer or boundary conditions.

The present solver manages its own memory and relies on the
Cubism library for updating local and global halo cells. The exclu-
sive ownership of memory to the flow solver implies a performance
penalty due to excessive copy overhead for halo cell synchroniza-
tion. Communication intensive operations like the advection algo-
rithm presented in this work are especially affected by this overhead.
To address this bottleneck, we have modified the Cubism library
such that it can be used as a standalone tool for halo cell synchro-
nization only. The modified library operates on view objects that
are wrapped around externally managed data that models a com-
putational block. The only requirement on computational blocks
is contiguous memory layout and that iteration over the data by

Layers Cubism Standard Cubism Halo Speedup
1 9.04 s 6.02 s 1.50
2 11.93 s 7.23 s 1.65
3 14.29 s 8.16 s 1.75
4 16.64 s 8.92 s 1.87

Table 1: Time to solution for different number of color func-
tion layers in the advection step. The column denoted as
“Cubism Standard” corresponds to the case when the library
owns thememory of the computational grid. The columnde-
noted by “Cubism Halo” corresponds to halo coordination
only. The work presented in [16] belongs to the “Cubism
Standard” case.

a pointer to its underlying type is defined. Individual blocks may
not necessarily be next to each other in memory. Table 1 shows the
performance gain of the advection step using the modified library
for a single compute node with 12 MPI ranks mapped to individual
cores. Arbitrary numbers of fields subject to communication are
organized in field containers and processed in batches. Communi-
cation requests with many fields, as it is the case for the advection
algorithm, improve the efficiency of communication buffer packing
internal to Cubism library as well as network utilization due to
larger message sizes.

3.2 MPI+OpenMP execution model
The flow solver presented in [16] is limited to synchronous ex-
change of halo cells. In order to perform meaningful work during
the communication of data, the halo exchange during advection has
been split into an asynchronous send initialization and a message
synchronization step in user code. The first step posts asynchro-
nous send and receive requests for blocks on subdomain boundaries.
After message posting, a list of internal blocks not subject to com-
munication is returned to the caller for immediate processing. The
total time for advection and the total time spent in message syn-
chronization is shown in Figure 2. The measurements correspond
to the accumulated time over all time steps where time spent in
message synchronization is one order of magnitude lower than the
total time spent in computation.

To reduce the surface-to-volume ratio of compute blocks on a
given node, a multi-threaded MPI+OpenMP execution model has
been implemented in addition to pure MPI. The multi-threaded
model maps MPI ranks to compute nodes instead of cores as in
the case of pure MPI. Compute blocks are mapped at a granularity
of one block per thread using a dynamic scheduling policy. Our
hybrid model requires two additional MPI communicators to embed
the MPI only Hypre [14] library. Hypre is needed to obtain the
solution of the pressure 𝑝 after the flow field has been advected.
Average time measurements for the hybrid execution model are
shown in Figure 2 in addition to the pure MPI model. The hybrid
advection scheme is currently slower compared to pureMPI because
management of contending resources in multi-threaded execution
has not been optimized yet. The reduction of the surface-to-volume
ratio in hybrid execution reduces the overall time spent in MPI
synchronization which can be beneficial for compute kernels with
very large messages.
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The additional communicators in the hybrid model are derived
based on the host (and optionally NUMA) affinity of each rank.
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2 , 3 and 4 . The data is obtained from the
Cray XC50 compute nodes on Piz Daint.

We split the world communicator into a node local comm_omp com-
municator, where the root ranks in comm_omp are further joined
in a group used to create comm_master for communication among
nodes. Figure 3 illustrates the communicator splitting used in our
hybrid model. The example shows three nodes A, B and C. At pro-
gram start, the ranks in MPI_COMM_WORLD are mapped to cores. The
world communicator is then split into comm_omp and comm_master
based on the rank affinity described above. The comm_master com-
municator is obtained from the root ranks in comm_omp, that is, 𝛼 , 𝛽
and 𝛾 for nodes A, B and C in Figure 3, respectively. Communicator
comm_master is the main communicator that is used for halo com-
munication among nodes. Ranks associated to this communicator
further control the spawning and joining of OpenMP threads. The
spawned threads are assigned the same affinity that corresponds
to ranks in the comm_omp communicator. For multi-threaded execu-
tion, the idle ranks in comm_omp are set to sleep which triggers a
context switch to activate the contending OpenMP threads. Calls to
the Hypre library are performed on the world communicator where
matrix assembly prior to the call is carried out on the comm_omp
communicator using node local data. Compute blocks on a node
are allocated by the ranks in comm_master and arranged on a vir-
tual Cartesian topology. Ranks in comm_omp work on a contiguous
subset of the Cartesian block grid during matrix assembly to ensure
efficient Hypre collaboration. The same subset of blocks is used for
other compute kernels executed in the multi-threaded environment.
After matrix assembly, the spawned threads are joined and sleep-
ing ranks are assigned back their resources to execute the Hypre
routines on the world communicator.

3.3 Scaling and memory requirements
The time to solution and weak scaling efficiency for the pure MPI
execution model of our multi-layer advection algorithm is shown
in Figure 4. The algorithm exhibits efficient scaling for large node
counts and is consistent among increasing numbers of marker
layers. Our hybrid MPI+OpenMP execution model exhibits identical
scaling. The memory footprint scales linearly with the number of
marker layers. Each layer requires 96 byte of double precision data
per cell. A typical problem with a mesh size of 3843 cells requires
about 5 GiB of memory for each layer.
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Figure 5: Rising bubbles. Snapshots of the interfaces at 𝑡 =

0, 5 and 10. Bubbles cluster up on the surface.
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Figure 6: Rising bubbles. Kinetic energy of themixture (left)
and the percentage of cells containing 1 , 2 ,
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4 VALIDATION
4.1 Rising bubbles
The first test demonstrates how overlapping interfaces are dis-
tributed over multiple layers. The problem is solved in the cubic
domain [0, 1]3 on a mesh of 643 cells with periodic boundary condi-
tions in the 𝑥− and 𝑧-directions and free-slip walls in the𝑦-direction.
The initial velocity is zero, and the volume fraction field represents
a layer of gas 0.8 < 𝑦 < 1 together with 397 bubbles of radius 0.05
placed uniformly over the remaining volume. Parameters of the
problem are density 𝜌1 = 1 and 𝜌2 = 0.01, viscosity 𝜇1 = 0.01 and
𝜇2 = 0.0001, gravitational acceleration 𝑔 = 5 and surface tension
coefficient 𝜎 = 0.1. The simulation is performed with 𝐿 = 8 layers.

Snapshots of the interfaces are shown in Figure 5. The bubbles
rise and cluster up on the surface, which deforms under the pressure
from bubbles. The initial separation between bubbles is sufficiently
large such that the interfaces do not overlap and all fit in one layer.
Cells with multiple interfaces appear as the bubbles move and the
distances between them reduce. Figure 6 shows the fraction of
cells containing multiple interfaces. The volume fraction therefore
distributes over multiple layers. However, the total gas volume
𝑉gas (𝑡) =

∑𝐿
𝑙=1

∫
𝛼𝑙 (𝒙, 𝑡) 𝑑𝑉 is conserved within 10−4 relative to

its initial value. The kinetic energy reduces to about 20% of its
maximum reached at 𝑡 ≈ 1. This residual flow is attributed to the
spurious flow inherent to the surface tension model. The evolution
of the kinetic energy suggests that the bubbles equilibrate near the
surface. Since four layers are sufficient to represent all overlapping
interfaces in this case, we use 𝐿 = 4 layers in other simulations.

Figure 7: Drop impact on liquid-liquid interface. Snapshots
of the interfaces at 𝑡 = 0.63, 0.67, and 0.77 s produced by
the present method (left) compared to images from numeri-
cal study [6] (right). Reproduced from [6], with permission
from Elsevier.

4.2 Drop impact on liquid-liquid interface
The second test validates the model on the case of the gravity-
driven impact of a liquid drop onto a liquid-liquid interface. The
problem is solved in a rectangular domain of size 5 × 10 × 5 cm
on a mesh containing 160 × 320 × 160 cells with no-slip walls in
the 𝑦−direction and periodic conditions in the other directions.
Parameters of the problem are taken from numerical study [6]
based on experiment [19] (Combination 1): density 𝜌1 = 949 and
𝜌2 = 1128 kg/m3, viscosity 𝜇1 = 0.019 and 𝜇2 = 0.0063 Pa ·
s, gravitational acceleration 𝑔 = 9.8 m/s2 and surface tension
coefficient 𝜎 = 0.029 N/m. They correspond to a water+glycerin
drop falling in silicon oil. A spherical drop of a radius 5.1 mm is
initially placed at a distance of 67 mm between its center and the
interface.

Snapshots of the interfaces and the corresponding slices are
shown in Figures 7 and 8 compared to experimental [19] and nu-
merical data [6]. The falling drop creates a bulge as it approaches
the interface. Then the liquid film between the liquids drains but
no coalescence occurs, and the liquid drop rests on the interface.
Our algorithm produces the same results as method [6], but it is
less computationally expensive for systems with many bubbles or
drops.

5 APPLICATION TO FOAMINGWATERFALL
Weapply our software to simulations of a foamingwaterfall and con-
sider two cases: with coalescence of bubbles using the standard VOF
method and without coalescence of bubbles using the algorithm for
coalescence prevention described in Section 2.2. This application
combines various physical processes and serves to demonstrate the
capabilities of our method.

5.1 Simulation setup
The problem is solved in a rectangular domain of size 2𝐻 × 𝐻 × 𝐻

with 𝐻 = 10 cm. The boundary conditions are illustrated to scale
in Figure 9 and include inlet, outlet, free-slip walls and periodic
conditions. The initial velocity is zero, and the volume fraction
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Figure 8: Drop impact on liquid-liquid interface. Slices of
the interfaces at 𝑡 = 0.63, 0.67, and 0.77 s produced by the
present method (left) compared to images from numerical
study [6] (center) and experimental data [19] (right).

represents the water surface in the middle of the domain. Param-
eters of the problem are density 𝜌1 = 1000 and 𝜌2 = 10 kg/m3,
viscosity 𝜇1 = 10−3 and 𝜇2 = 10−5 Pa · s, gravitational acceleration
𝑔 = 9.8 m/s2 and surface tension coefficient 𝜎 = 0.072 N/m. The
thickness of the waterfall is 5 mm and the inlet velocity is 1.5 m/s.
The dimensionless time is defined as 𝑡∗ = 𝑡/

√︁
𝐻/𝑔 relative to time

unit
√︁
𝐻/𝑔 ≈ 0.1 s. Unless stated otherwise, all statistics and visual-

izations are obtained from simulations on a mesh of 768× 384× 384
cells. Selected statistics are compared to results on coarser meshes
of 384 × 192 × 192 or 192 × 96 × 96 cells.

Simulation with coalescence prevention on the finest mesh of
768 × 384 × 384 cells took 20 hours to reach time 𝑡∗ = 12 on 1152
compute nodes of Piz Daint supercomputer equipped with 12-core
CPU Intel® Xeon® E5-2690 v3 processors.

y

z x

Figure 9: Initial position of water surface (blue) and bound-
ary conditions: inlet (red), outlet (green), free-slip walls
(gray) and periodic on other boundaries.

5.2 Air entrainment
The development of a waterfall involves various phenomena: en-
trainment of air by a sheet of water, breakup and deformation of
bubbles and, depending on the model, either coalescence or clus-
tering of bubbles. The mechanisms of air entrainment in breaking
waves are discussed in [17] using plunging jets as a model example.
Four mechanisms are distinguished: entrapment of a tube of air
when the plunging jet hits the front face of the wave, entrainment
around the jet impact site as the jet drags air into the water, entrain-
ment by impacts of subsequent splashes created by the primary jet
impact and the leading-edge entrainment of the turbulent breaking
region at later stages of the breaking process.

In our simulations we find two major mechanisms of air entrain-
ment. Three-dimensional visualizations of the waterfall evolution

are shown in Figures 11 and 12, while Figure 10 shows the volume
fraction field averaged in the 𝑧-direction. The behavior at early
stages is the same for both cases with and without coalescence of
bubbles: a sheet of water impacts the water surface and creates
a tube of air leading to air entrainment. This corresponds to one
major mechanism of air entrainment in breaking waves discussed
in [17]. Once the air tube disappears by 𝑡∗ = 6, we observe another
mechanism of air entrainment: the plunging jet (or sheet) of water
drags air into the water.

Figure 10: Volume fraction averaged in the 𝑧-direction: with
(left) andwithout coalescence (right) at 𝑡∗ = 2.5, 6, 10 and 12.

5.3 Bubble size distribution
One important characteristic of the air entrainment and bubble
generation is the bubble size distribution. Theoretical model [13]
suggests the scaling law for the distribution of the bubble radius

𝑁 (𝑟 ) ∝ 𝑟−10/3 , (12)

where 𝑁 (𝑟 )𝑑𝑟 is the number of bubbles of radii between 𝑟 and 𝑟 +𝑑𝑟 .
The model stems from the assumption that the inflow of air per unit
volume is constant, and the number of bubbles depends only on the
turbulent dissipation rate and the bubble radius. This scaling law is
commonly observed for bubbles generated by breaking waves and
has been reported in experimental [9] and numerical [10] studies.

Figure 13 shows the time-averaged distribution of the bubble size
at various resolutions. In both cases with or without coalescence
of bubbles, we recover the scaling law (12). Prevention of coales-
cence only increases the number of bubbles and does not have a
major effect on distribution of the bubble size. One explanation
for this behavior is that the size of bubbles is determined by the
bubble breakup near the waterfall impact zone and not affected by
coalescence.



PASC ’20, June 2020, Geneva, Switzerland

Figure 11: Snapshots of the interface at 𝑡∗ = 2.5, 6, 10 and 12 with (left) and without coalescence (right).
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Figure 12: Snapshot of the interface at 𝑡∗ = 12 with (left) and without coalescence (right).
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Figure 13: Bubble size distribution 𝑁 (𝑟 ) with (left) and
without coalescence (right) on a mesh of 𝑁𝑦 = 96 ,
192 and 384 cells compared to theoretical rela-
tion [13] 𝑁 (𝑟 ) ∝ 𝑟−10/3 . The results are averaged in
time over 10 < 𝑡∗ < 12, and 𝑁 (𝑟 ) is the number of bubbles
with the equivalent radius between 𝑟 − 0.1 and 𝑟 + 0.1 mm.

However, inhibition of coalescence increases the total volume
entrained in the water by a factor of five. This is shown in Figure 14
where the volume of entrained air is obtained by summing up the
volume of all bubbles. Another quantity reported therein is the
histogram of the bubble radius weighted by the bubble volume. It
indicates that without coalescence, more air is contained in smaller
bubbles, while the effects of bubble coalescence result in a more
flat profile of the histogram.

5.4 Formation of foam
The most apparent effect of coalescence inhibition is the clustering
of bubbles on the surface. Bubbles generated in the entrainment
zone rise to the surface, while they may experience breakups and
reduce in size. Figure 15 gives three examples of such bubble tra-
jectories. Bubbles reaching the surface cluster up as foam.

The formation and evolution of foam is an active topic of re-
search [21]. Inhibition of coalescence, achieved in practice by adding
surfactants, promotes the existence of stable films between bub-
bles. Once the liquid drains from the gaps separating the bubbles,
sharp junctures appear at the intersections of different layers of
film (lamellae) and form the so called Plateau borders. In our sim-
ulations we observe these characteristic features of foam as seen
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Figure 14: Volume of entrained air (left) and distribution
𝑑𝑉 /𝑑𝑟 of the volume by radius (right), where 𝑉 (𝑟 ) is the av-
eraged in time 10 < 𝑡∗ < 12 total volume of bubbles with
equivalent radius below 𝑟 . Values of volume are relative to
the initial volume of water. Mesh 𝑁𝑦 = 192 with and
without coalescence and mesh 𝑁𝑦 = 384 with 
and without coalescence .

from Figure 16. There are multiple places where three bubbles are
closely packed and the angle between the interfaces at the junctures
approaches 120◦.

6 CONCLUSION
We have presented a new algorithm for simulating multiphase
flows with non-coalescing bubbles. Our algorithm produces the
same results as the standard multi-marker volume-of-fluid but it is
more computationally efficient since the number of fields required
to represent overlapping interfaces does not depend on the number
of bubbles in the simulation.

We have applied our method to investigate the evolution of a
waterfall and analyze the effects of coalescence prevention on the
bubble size distribution. We observe that prevention of coalescence
increases the amount of entrained air in the water and reduces the
size of bubbles but does not change the scaling law, which in both
cases follows the standard relation of 𝑁 (𝑟 ) ∝ 𝑟−10/3. Moreover, our
model allows us to describe the formation of clusters of bubbles on
the surface which show the characteristic features of foam.

The implementation of our software is based on the Cubism [8,
27] structured grid library which has been extended with support
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Figure 15: Trajectories of three bubbles and their shapes be-
tween time 𝑡∗ = 5.5 (bottom right) and 𝑡∗ = 12 (top left).
Other bubbles in circular regions near them are shown in
gray, and the inset image illustrates their positions in the
domain. Bubbles created by the plunging sheet of water rise
towards the surface and become part of a cluster of foam.

Figure 16: Slice of the interface through 𝑦 = 0.55 at 𝑡∗ =

12. Clusters of bubbles on the surface show characteristic
features of foam: thin membranes separating neighboring
bubbles (lamellae) and junctions of multiple membranes
(Plateau borders).

for externally managed memory. This optimization reduces un-
necessary pressure on the memory bus and enables an almost 2x
improvement on run time of the advection step. The block process-
ing of our flow solver has further been enhanced by implementing
asynchronous message posting followed by a synchronization stage
such that network latency is efficiently hidden. We have demon-
strated efficient scaling results of our new advection algorithm with
O(104) cavities being transported. Furthermore, we have extended
our software with a hybrid MPI+OpenMP execution model. Our
hybrid model exhibits identical weak scaling as in the pure MPI
case at slightly worse wall time during the execution of the advec-
tion kernel. We have successfully integrated the Hypre library in
our hybrid model by utilizing two additional MPI communicators

to coordinate between threaded execution and node local matrix
assembly prior to Hypre calls. Our hybrid model is currently exper-
imental and will address MPI3 specific one-sided communication
features for future development.
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